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Abstract

Motivation: Large-scale gene expression analysis is a valuable asset for data-driven hypothesis

generation. However, the convoluted nature of large expression datasets often hinders extraction

of meaningful biological information.

Results: To this end, we developed GECO, a gene expression correlation analysis software that

uses a genetic algorithm-driven approach to deconvolute complex expression datasets into two

subpopulations that display positive and negative correlations between a pair of queried genes.

GECO’s mutational enrichment and pairwise drug sensitivity analyses functions that follow the de-

convolution step may help to identify the mutational factors that drive the gene expression correl-

ation in the generated subpopulations and their differential drug vulnerabilities. Finally, GECO’s

drug sensitivity screen function can be used to identify drugs that differentially affect the

subpopulations.

Availability and implementation: http://www.proteinguru.com/geco/ and http://www.proteinguru.

com/geco/codes/

Contact: ayaz_najafov@hms.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The Cancer Cell Line Encyclopedia (CCLE) (Barretina et al., 2012),

Genomics of Drug Sensitivity in Cancer database (Garnett et al.,

2012; Yang et al., 2013) and COSMIC (GDSC/COSMIC) (Forbes

et al., 2015) provide a vast collection of gene expression and muta-

tion data across �1000 cancer cell lines. Functional relationships be-

tween genes can be discovered by using gene expression correlation

analysis as a hypothesis-generation tool. However, most biological

databases are complex and convoluted, clouding clarity of such cor-

relation analyses. To address this issue we developed GECO—a soft-

ware for gene expression correlation analysis that uses a genetic

algorithm-driven method for deconvoluting complex databases.

Following deconvolution, GECO performs mutational enrichment

and differential drug sensitivity analyses to facilitate data-driven hy-

pothesis generation. While GECO uses gene expression, mutation

and drug sensitivity data from the aforementioned cell line databases

to demonstrate the application of its features, other types of relevant

datasets can also be deconvoluted and processed through GECO.

2 Materials and methods

GECO was implemented using R (RStudio, http://www.r-project.

org/), the app was implemented using Shiny (http://shiny.rstudio.

com/) and hosted at Shinyapps.io (http://shinyapps.io). The follow-

ing packages were employed: shiny, gridExtra, ggplot2, ggrepel,

splitstackshape, dplyer, shinyjs and DT (available from http://cran.

rstudio.com/ or http://bioconductor.org/).

The gene expression and mutation datasets were downloaded

from CCLE (http://www.broadinstitute.org/ccle/) and GDSC/

COSMIC (http://www.cancerrxgene.org/). Drug sensitivity database

for 265 drugs was downloaded from GDSC (Supplementary Table

S1). While GECO uses expression and mutation information from
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the aforementioned databases, its open-source R codes can be read-

ily adapted to analyze any other such databases.

Stringency of deconvolution determined the number of times the

genetic algorithm cycles was to be repeated for the population to be

deconvoluted. In other words, for stringency level 1, all 1036 cell

lines were passed through ‘mutagenesis’ and selection once and this

was repeated twice for stringency level 2, and so on (Supplementary

Figs S1 and S2). The efficiency of the stringency and the deconvolu-

tion algorithm was tested by pooling two dummy datasets A and B

(500 data points each, Supplementary Table S2) and applying the

GECO’s deconvolution function to re-identify the dataset subpopu-

lations. Three randomly generated, distinct A and B datasets were

analyzed.

Pearson’s, Kendall’s Tau and Spearman’s rank correlation tests

were performed for the correlation tests. Spearman’s rank correl-

ation test was used for sorting (used in the genome-wide correlation

section) and deconvolution steps of the app, due to non-normal dis-

tribution of the gene expression data.

3 Results

The basic function of GECO is to generate binary (i.e. gene1 versus

gene2, without deconvolution) gene expression correlation analyses

using Pearson’s, Kendall’s Tau and Spearman’s rank correlation

tests across �1000 human cancer cell lines, generating a visual out-

put and a statistical analysis summary (Supplementary Fig. S3).

The second function of GECO produces rapid genome-wide

gene expression correlation analyses for single-gene queries (i.e.

gene1 versus genome, without deconvolution), across the �1000

cancer cell lines. Here, the output files with the statistical analysis

summaries are instantaneously generated, using GECO’s large (31

GB) pre-computed database of gene expression correlation informa-

tion across the genome. Top 20 strongest positive/negative gene ex-

pression correlation matches for a queried gene are displayed and

the complete analysis is given as a downloadable CSV file

(Supplementary Fig. S4).

The third and main functionality of GECO addresses the convo-

luted and often bimodal nature of gene expression datasets. To iden-

tify cancer cell line subpopulations where gene expression

correlation between two queried genes is more significant than in

the initial population (�1000 cell lines), we developed a genetic al-

gorithm that performs cyclic population re-sampling iterations to

deconvolute such complex datasets at a chosen stringency level.

During genetic algorithm-driven deconvolution, GECO gener-

ates two subpopulations where the queried gene pair presents strong

positive versus negative expression correlations (Fig. 1 and

Supplementary Figs S5 and S6, Movies S1 and S2). As a result, gene

pairs, expression of which may not have strongly correlated across

the initial population, are found to strongly correlate in a smaller

subpopulation of cell lines identified by such deconvolution analysis.

Post-deconvolution, GECO extracts the statistically significant

(Fisher’s exact test) differential mutational enrichment information

found in the generated two subpopulations, allowing rapid identifi-

cation of mutations that may contribute to the positive/negative cor-

relations between the two queried genes.

To illustrate the accuracy of the deconvolution algorithm, we

analyzed two artificial populations that were designed to have either

strong positive or strong negative correlation patterns

(Supplementary Table S2). These two populations were mixed and

processed through GECO’s deconvolution algorithm and the per-

centage of accurately re-identified population members (‘strong

positive’ population members versus ‘strong negative’ population

members) were determined, as a function of GECO deconvolution

stringency (Supplementary Fig. S6B). The algorithm was 82% accur-

ate at stringency level 5 and 93% accurate at stringency level 10.

To demonstrate the effectiveness of GECO, we mapped differen-

tial enrichment of the reported TP53 gain-of-function mutations

(Supplementary Table S3) (Muller and Vousden, 2014; Olive et al.,

2004) in cell lines that show positive versus negative correlation be-

tween TNF-a expression and the expression of four transcriptional

targets of the TNF-a/NF-jB pathway (Pahl, 1999), since these muta-

tions have been reported to influence the activity of this pathway

(Cooks et al., 2013; Di Minin et al., 2014). This analysis revealed an

interesting differential clustering of various TP53 gain-of-function

mutations in cell lines that contribute to positive versus negative cor-

relation between TNF-a expression and expression of the four tar-

gets (Supplementary Fig. S7).

The second, post-deconvolution feature of GECO allows the

user to perform drug sensitivity comparison between the two subpo-

pulations, for any given drug-of-interest among the 265 drugs

employed in the GDSC database. This function allows identification

of relationships between the positive/negative correlation trends

between a pair of genes that may drive sensitivity/resistance to

the tested drugs and binary visualization of the differential drug

sensitivity between the subpopulations. For example, the post-

deconvolution subpopulation of cell lines that show a strong

positive correlation between the expression of AXL and GAS6, are

more sensitive to the chemotherapy agent Docetaxel, than those that

show a strong negative expression correlation between these genes

(Fig. 2A—left panel). Similar analysis applied to TP53 and CCND1

gene pair reveals a strong differential sensitivity to the HSP90

inhibitor AUY922 (Fig. 2A—right panel).

Thus, this post-deconvolution differential drug sensitivity ana-

lysis function can reveal potentially useful information about vulner-

ability of the subpopulations to various drugs in the context of

positive/negative correlation between the queried genes, shedding

light on the relationship between the genes and the drugs of interest.

The third post-deconvolution function of GECO allows perform-

ing virtual screens, to identify drugs to which the two subpopula-

tions are differentially sensitive (Fig. 2B and Supplementary Figs S8

and S9, Movies S3 and S4). This analysis consists of iterative t-tests

across the 265 drugs between the two subpopulations and presents a

summary volcano plot depicting the fold (subpopulation1/subpopu-

lation2) of mean subpopulation IC50 values versus the t-test

P-values.

To illustrate this functionality, we performed the screen for the

TNF-a/TNFAIP3 gene pair and found a strong differential sensitivity

between the generated subpopulations to EGFR inhibitor Erlotinib,

PI3Kc inhibitor AS605240, ALK inhibitor TAE684, CDK inhibitor

Roscovitine and IKKa/b inhibitor BMS345541 (Fig. 2B). Remarkably,

EGFR and ALK have been implicated in positive regulation of the

NF-jB pathway (Kuo et al., 2007; Shostak and Chariot, 2015), while

AS605240, Roscovitine and BMS345541 have been previously shown

to inhibit the TNF-a/NF-jB pathway (Burke et al., 2003; Dey et al.,

2008; Dutra et al., 2011; Wei et al., 2010).

A similar drug screen analysis for TP53 and its transcriptional target

BAX revealed a differential sensitivity of the subpopulations to AMPK

activator AICAR and Survivin inhibitor YM155 (Supplementary Fig.

S8). In addition, this analysis for TNF and its transcriptional target

MMP9 revealed differential sensitivity to the chemotherapy agents

Doxorubicin and Mitomycin C (Supplementary Fig. S9).

In summary, GECO uses a genetic algorithm-driven data decon-

volution process to address the complexity and heterogeneity of the
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cancer cell line expression databases and identifies subpopulations

where gene expression correlation for a queried gene pair is signifi-

cant. GECO’s mutational enrichment function that follows the decon-

volution step may help to identify the mutational factors that drive

the gene expression correlation in the generated subpopulations. The

differential drug sensitivity comparison and differential drug sensitiv-

ity screen functions of GECO can be useful for studying cell signaling

and for identification of drug vulnerabilities of cancer cells.

4 Discussion

We have developed GECO as an application for streamlined gene

expression correlation analysis, with additional features, such as

genome-wide expression correlation and a genetic algorithm-driven

deconvolution of the expression datasets into subpopulations that

contribute to positive/negative correlation between a pair of genes.

Following the deconvolution step, GECO performs comparison of

these subpopulations in the context of mutational enrichment and

differential drug sensitivity. Finally, GECO’s drug screen function

reveals the drugs to which the subpopulations are differentially sen-

sitive. These gene expression correlation, mutational enrichment

and differential drug sensitivity analysis features of GECO facilitate

the process of hypothesis generation.

By making an assumption that the mRNA expression levels of an

upstream signaling regulator X (such as a receptor agonist or a tran-

scription factor) should correlate positively and strongly with the

mRNA expression levels of its downstream effector Y (which has

been established to be transcriptionally regulated by X) if a cell line

subpopulation has a highly activated X–Y pathway, data-driven hy-

pothesis generation for subpopulations-specific pathway activity lev-

els and drug resistance can be performed. For example, the

subpopulations that have a strong TNF/TNFAIP3 gene expression

correlation are likely to have a strongly activated TNF-a/NF-jB

pathway, since TNFAIP3 is a transcriptional target of this pathway.

Fig. 1. GECO employs genetic algorithms to deconvolute complex expression datasets and reveal subpopulations with strong positive/negative gene

expression correlations

Fig. 2. The two differential drug sensitivity functions of GECO. (A) Two exam-

ples of the GECO’s pairwise analysis of differential drug sensitivity between

the two subpopulations generated from the deconvolution. The t-test

P-values and mean values are indicated. (B) An example of GECO’s differen-

tial drug sensitivity screen output

GECO: gene expression correlation analysis 3
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This would also explain why this subpopulation is more resistant to

the inhibitors of this pathway—AS605240, Roscovitine and

BMS345541. However, caution needs to be executed when making

this assumption, especially in the light of heterogeneity and com-

plexity of the genetic backgrounds of the subpopulations.

The virtual drug sensitivity screen analysis allows identification

of drug vulnerabilities of the subpopulations, shedding light on how

certain gene expression profiles may render cancer cells vulnerable

to certain drugs. This, in turn, could help to understand cancer re-

sistance to drugs—a clinically critical issue (Garraway and Jänne,

2012; Holohan et al., 2013; Konieczkowski et al., 2018).

The GECO’s novel genetic algorithm-based deconvolution

method for extraction of meaningful information from complex

datasets and its derivatives can potentially be applied to other types

of complex datasets. All of the analyses performed by GECO gener-

ate downloadable CVS files, for the tables, and high-resolution PDF

files, for the graph outputs, simplifying the data storage, analysis

and publication. GECO app (http://www.proteinguru.com/geco/)

and its R source codes (http://www.proteinguru.com/geco/codes/)

are freely available.
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Supplementary Figure 1. Outline of the GECO’s genetic algorithms. The initial dataset 

correlation (X1) is modified by performing cyclic “mutagenesis” of the original cell line population 

of 1036 cell lines, which is simply put: iterative removal of each cell line and subsequent 

analysis of the effect of this removal on the gene expression correlation of the queried pair of 

genes (by the Spearman correlation test) to obtain a new correlation coefficient (X2). If 

removing a cell line results in a stronger correlation (i.e. X2>X1 for positive correlation 

selection), the cell line is kept removed, if not, the cell line is not removed. This is repeated for 

all 1036 cell lines once, when the stringency is set to 1. Stringency level determines how many 

rounds this process is performed (from 1 to 10). With each round, more and more “outliers” are 

removed, making the subpopulation more and more “fit” and increasing the correlation 

coefficient, but also decreasing the subpopulation size. A parallel process is done for the 

selection of an optimized subpopulation with a strong negative correlation coefficient for the 

queried pair of genes. 

Supplementary Figure 2. The R code for the GECO’s deconvolution genetic algorithm. 

Two “for” loops drive the iterative selection for a “fitter” subpopulation with stronger 

positive/negative gene expression correlation across the 1036 cell lines, using Spearman 

correlation coefficient as a marker of selection of “fitness”. “Mutagenesis” constitutes removal of 

each cell lines on each iteration of the selection cycle. 

 

Supplementary Figure 3. GECO’s pre-deconvolution binary gene expression correlation 

analysis output sample from the “Correlation Data” tab. (A) A sample output of the 

statistical analysis when TNF vs. TNFAIP3 genes are queried using CCLE database. (B) Same 

as (A), except GDSC database was used. The graphical output can be downloaded as a high-

resolution PDF output. 



Supplementary Figure 4. GECO’s pre-deconvolution genome-wide gene expression 

correlation analysis sample output from the “Genome-wide correlators” tab. A sample 

tabular output of the genome-wide statistical analysis, using a large pre-computed gene 

expression correlation database, is instantaneously presented when a gene symbol (e.g. TNF) 

is queried. The correlators are sorted by the Spearman correlation coefficient. Top 20 positive 

correlators (top panel) and top 20 negative correlators (bottom panel) are instantaneously 

reported. The whole analysis (e. g. TNF vs. genome gene expression correlation analysis) can 

be downloaded as a CSV file. 

 

Supplementary Figure 5. Comparison of the gene expression correlation between TNF 

and MMP9 before deconvolution (A) and after deconvolution (B and C). Outputs of three 

different stringency settings are shown (B and C). While TNF and MMP9 show a weak positive 

correlation in their expression across the 1036 cell lines before the deconvolution (A), GECO’s 

genetic algorithm-driven deconvolution reveals a subpopulation of cell lines that show a much 

stronger positive expression correlation (B) and a subpopulation of cell lines that even show a 

strong negative expression correlation (C).  

 

Supplementary Figure 6. GECO’s deconvolution performance. (A) Linearity of the 

deconvolution performance (seconds) as a function of increased stringency level (1-10). Three 

gene pairs were queried and averages were plotted with S.D. shown in the error bars. (B) The 

accuracy of the GECO deconvolution algorithm as a function of stringency level. Two dummy 

subpopulations (see Supplementary Table 2) with strong positive and strong negative 

correlation were combined and then deconvoluted using GECO (using the algorithm described 



in the Supplementary Figure 2). Averages of % correctly re-identified subpopulation members 

from three independent exercises were plotted with S.D. shown in the error bars.  

 

Supplementary Figure 7. GECO’s mutational enrichment from the deconvoluted 

subpopulations. Mutational enrichment for gain-of-function TP53 mutations (blue) in cell lines 

that contribute to strong positive vs. negative gene expression correlation between TNF and 

four NF-κB target genes: MMP1, MMP9, TNFSF13B, and TNFSF15. Gain-of-function TP53 

mutations are enriched either (A) in cell lines that contribute to both positive and negative 

correlation or (B) primarily enriched in cell lines that contribute to negative correlation. Fold 

enrichment is defined as frequency of a given mutation found in the subpopulation that 

contributes to the positive/negative correlation between the gene pair (TNF vs. 

MMP1/MMP9/TNFSF13B/TNFSF15) over the subpopulation that does not contribute. 

 

Supplementary Figure 8. GECO’s drug screen reveals differential sensitivity to AMPK 

activator AICAR and Survivin inhibitor YM155 in the cell line subpopulations that 

contribute to the positive/negative gene expression correlation between TP53 and BAX. 

The volcano plot depicts the screen results, where the significant (p<0.05) hits labeled. The 

boxplot depicts the pairwise sensitivity comparison for the indicated subpopulations and drugs. 

The t-test p-values and mean values are indicated. 

 

Supplementary Figure 9. GECO’s drug screen reveals differential sensitivity to the 

chemotherapy agent Doxorubicin in the cell line subpopulations that contribute to the 

positive/negative gene expression correlation between TNF and MMP9. The volcano plot 

depicts the screen results, where the significant (p<0.05) hits labeled. The boxplot depicts the 



pairwise sensitivity comparison for the indicated subpopulations and drugs. The t-test p-values 

and mean values are indicated. 

 


